Tetrahedron Letters No. 2, pp 129 - 132, 1972. Pergamon Press. Printed in Great Britain.

THE EFFECT OF PYRAMIDALITY ON ROTATIONAL BARRIERS IN ACYCLIC TRIALKYLAMINES

C. Hackett Bushweller¹ and Warren G. Anderson

Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, U.S.A.

(Received in USA 3 December 1971; received in UK for publication 8 December 1971)

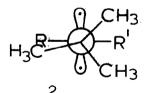
The relative importance of the various factors which determine the barrier to pyramidal inversion about nitrogen is reasonably well established in a variety of heterocycles and in some acyclic systems.² However, it has not been clearly established what happens to the rotational barrier in acyclic trialkylamines³ as alkyl substituent steric bulk increases.

Examination of the ¹H DNMR spectra (60 MHz) of a series of N-tert-butyl-N,N-dialkylamines (<u>1</u>) as 5% v/v solutions in $\operatorname{CBrF}_3(\underline{lb-e},\underline{q})$ or a 7% v/v solution in $\operatorname{CH}_2\operatorname{CHCl}(\underline{la})$ or a 10% v/v solution in $\operatorname{CD}_2\operatorname{CDCl}(\underline{lf})^4$ revealed in most cases changes in the tert-butyl resonance at low temperatures attributable to slowing of tert-butyl rotation. Although there were differences in the chemical shift values and widths-at-half-height at low temperatures in the two solvent systems employed, the barrier (ΔG^{\ddagger}) to tert-butyl rotation or nitrogen inversion determined by total line shape analysis for those compounds appreciably soluble in both solvents, e.g., <u>1d</u>, was independent of solvent within experimental error (±0.2 kcal/mole). The chemical shift values for the nonequivalent methyls

129

$$\frac{1}{(a)} = R^{1} = CH_{3}$$
(b) $R = CH_{3}; R^{1} = CD_{2}CD_{3}$
(c) $R = CD_{3}; R^{1} = CH_{2}CD_{3}$
(d) $R = R^{1} = CH_{2}CD_{3}$
(d) $R = R^{1} = CH_{2}CD_{3}$
(e) $R = CH_{3}; R^{1} = (CD_{3})_{2}CD$
(f) $R = CH_{3}; R^{1} = CH_{2}C_{6}H_{5}$
(g) $R = CH_{2}CD_{3}; R^{1} = (CD_{3})_{2}CD$

of the various tert-butyl groups under slow exchange conditions were obtained from a total line shape analysis and are compiled in Table I. In the case of lg, no really clear-cut changes in the spectrum occurred although at -185° definite asymmetry is observed in the tert-butyl resonance (TMS Lorentzian). At -188°, the sample of lg froze.


Table I.	ιH	Cher	nical	Shifts	60 (60	MHz)	of	Nonequivalent	Methyls
	of	the	tert-	Butyl	Group	in	N-te	ert-Butyl-N,N-o	dialkylamines

compound	temp, °C	chemical shifts, Hz	solvent
<u>la</u>	-165°	64.8(6H); 50.3(3H)	CH2CHC1
<u>1b</u>	- 145°	68.6(6H), 51.2(3H)	CBrF ₃
lc	-145°	68.5(6H); 52.0(3H)	CBrF ₃
<u>1d</u>	-167°	69.6(6H); 56.5(3H)	CBrF ₃
<u>le</u>	-174°	72.0(3H); 67.0(3H); 58.0(3H)	CBrF ₃
<u>lf</u>	-151°	76.7(3H); 66.6(3H); 60.0(3H)	CD2CDC1

Taking into account the variations in T_2 with temperature for <u>la</u>, <u>lb</u>, <u>lc</u>, and <u>lf</u> using a method described previously^{3a} or using model compounds, e.g., <u>lb</u> for <u>lc</u>, and assuming the chemical shifts of the tert-butyl resonances to be independent of temperature as has been observed previously in the case of <u>la</u>^{3a}, free energies of activation (AG[‡]) for tert-butyl rotation were determined by the total line shape method and are compiled in Table II. Since no unequivocal changes occurred for the DNMR spectrum of <u>lg</u>, we are able to assign only an upper limit to the tert-butyl rotational barrier in <u>lg</u>. It <u>Table II</u>. Free Energy of Activation (AG[‡]) for tert-Butyl Rotation and Net Nitrogen Inversion in N-tert-Butyl-N,N-dialkylamines

compound	temp, °C	<pre>AG[‡] (tert-butyl rotation),</pre>	∆G‡ (inversion), kcal/mole
<u>la</u>	-153°	6.0±0.1	
<u>1b</u>	-130°	7.1±0.1	
<u>lc</u>	-130°	7.1±0.1	7.2±0.2
<u>lf</u>	-138°	6.2±0.2	6.2±0.2
<u>14</u>	-160°	5.7±0.2	5.8±0.2
<u>le</u>	-167°	5.6±0.2	
<u>lg</u>	-185°	≪4.4	≼4.4

is noteworthy that the barriers (ΔG^{\ddagger}) to net nitrogen inversion in <u>lc</u>, <u>ld</u>, and <u>lf</u> as revealed by the CH₂ resonances separating into AB spectra are essentially identical to the respective tert-butyl rotational barriers (Table II) again consistent with a high degree of cooperativity between the rotation and inversion processes.⁴ Such behavior is consistent with but not unequivocal proof for a common transition state (2) for tert-butyl rotation and nitrogen inversion⁴ in the series <u>l</u>. Perusual of Table II indicates first an increase in the free energy of activation (ΔG^{\ddagger}) for tert-butyl rotation in going from <u>la</u> to <u>lb</u> or <u>lc</u> and then a progressive <u>decrease</u> as the steric bulk of the alkyl substituents increases. Using the common transition state model, as the steric

bulk of the N-alkyl substituents increases, the pyramidality about nitrogen should decrease and the contribution to the tert-butyl rotational barrier due to nitrogen rehybridization should decrease.⁴ Indeed, the barrier to nitrogen inversion should also

decrease as is observed. In a comparison between <u>la</u> and <u>lb</u> or <u>lc</u>, examination of models indicates no significant increase in nonbonded repulsions in the pyramidal ground state of <u>lb</u> or <u>lc</u> as compared to <u>la</u>, i.e., similar pyramidalities, due to the ability of the ethyl group to rotate into conformations which minimize nonbonded repulsions. However, in <u>lc</u>, rendering the diastereotopic CH_2 protons isochronous on the NMR time scale requires not only nitrogen inversion but also CH_2 -N bond rotation. Thus, there may well be a significant

No. 2

torsional contribution to the observed barrier for the net inversion process in <u>lc</u>. This would lead, of course, to a higher barrier to the net inversion process in <u>lc</u> than in <u>la</u> and a concomitant increase in the tert-butyl rotational barrier using the coupled inversion-rotation model as is observed (Table II). Indeed, this rationale may be applied to all of the compounds in series <u>l</u>. However, subsequent <u>increases</u> in the steric bulk of the N-alkyl substituents then lead to a progressive <u>decrease</u> in the tert-butyl rotational barrier (Table II) consistent with an ever-decreasing pyramidality resulting in a decreasing rehybridization contribution to the tert-butyl rotational barrier. While net rotation of tert-butyl may be assumed to have 3-fold character in <u>la</u>, the apparently significantly reduced pyramidality in more hindered amines, e.g., <u>lg</u>, imparts a significant degree of 6-fold character to tert-butyl rotation and lowers the barrier.

Thus, it is apparent from the above data that not only barriers to nitrogen inversion but also barriers to C-N bond rotation are a function of pyramidality about nitrogen in acyclic trialkylamines. The trend observed for the series $\underline{1}$ is in contrast to the generally observed increase in rotational barriers for acyclic hydrocarbons as substituent steric bulk increases. ^{3bc}

Acknowledgment: We are grateful to the National Science Foundation (GP-18197) for support.

REFERENCES

- (1) Alfred P. Gloan Research Fellow, 1971-73.
- J. M. Lehn, <u>Topics in Current Chemistry</u>, <u>15</u>, 311 (1970); A. Rauk, L. C. Allen, and K. Mislow, <u>Angew. Chem. internat. Edit.</u>, <u>9</u>, 400 (1970); H. Kessler, <u>ibid.</u>, <u>9</u>, 219 (1970).
- (3) (a) C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, <u>J. Amer. Chem.</u>
 <u>Soc.</u>, <u>92</u>, 6349 (1970); (b) E. B. Wilson, <u>Advan. Chem. Phys.</u>, <u>2</u>, 367 (1959); (c) D. J. Millen, <u>Prog. Stereochem.</u>, <u>3</u>, 138 (1962).
- (4) C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, <u>J. Amer. Chem. Soc</u>., 93, 542 (1971).